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Abstract— Patients with sleep disorders can better manage 

their lifestyle if they know about their special situations. Detection 

of such sleep disorders is usually possible by analyzing a number 

of vital signals that has been collected from the patients. To 

simplify this task, a number of Automatic Sleep Stage Recognition 

(ASSR) methods have been proposed. Most of these methods use 

temporal-frequency features that have been extracted from the 

vital signals. However, due to the non-stationary nature of sleep 

signals, such schemes are not leading an acceptable accuracy. 

Recently, some ASSR methods have been proposed which uses 

deep neural networks for unsupervised feature extraction. In this 

paper, we proposed to combine the two ideas and use both 

temporal-frequency and unsupervised features at the same time. 

To augment the time resolution, each standard epoch is segmented 

into 5 sub-epochs. Additionally, to enhance the accuracy, we 

employ three classifiers with different properties and then use an 

ensemble method as the ultimate classifier. The simulation results 

show that the proposed method enhances the accuracy of 

conventional ASSR methods. 

Keywords— Sleep scoring, automatic sleep stage recognition, 

unsupervised features, hybrid features, EEG signal. 

I.  INTRODUCTION 

Sleep is considered as a paramount physical and mental 

state of humankind. Not only disorders in sleep will affect 

people’s physical health, but also it may lead to some mental 

illnesses which can deeply impact one’s quality of life. The 

observation of sleep stages is the primary tool that aids 

physicians to diagnose sleep disorders e.g., sleep apnea, 

narcolepsy. To that end, monitoring and recording activities 

during sleep period is of high importance in every aspect. In 

general, experts and sleep specialists determine the stages of 

sleep by visually analyzing the different epochs of the vital 

signals recorded from the patient. To simplify this process (as 

human-based monitoring might be very time consuming task), 

many efforts have been put into work reaching an automatic 

approach to address this problem. Moreover, sleep scoring is 

considered as a classification problem of vital signals received 

from the patient. Amongst the vital signals, the EEG signal is 

the most significant one and it has been used in this paper.  

The standard method for sleep staging is based on the 

criteria proposed by Rechtschaffen & Kales [1] (R&K). 

According to this method, human’s sleep is divided into 6 

essential stages: Awake, Non Rapid Eye Movement(NREM) 

stage 1, NREM stage 2, NREM stage 3, NREM stage 4, Rapid 

Eye Movement(REM). However, in another method proposed 

by American Academy of Sleep Medicine (AASM), NREM 

stages 3 and 4 from the standard R&K were merged into the 

new stage referred to as Slow Wave Sleep (SWS) [2]. 

Different approaches have been proposed to extract features 

from the EEG signals. Amongst them, temporal [3-4] and 

frequency features [5-7] were drawn the most attention. The 

shortcoming of these schemes is that the EEG is regarded as a 

non-stationary signal. Henceforth, the conventional temporal 

and frequency features couldn’t capture all the information and 

so does not lead to a great accuracy of classification. In recent 

years, there has been a resurgence of interest in deep learning 

systems. Deep Belief Networks (DBNs) were widely used to 

extract features from vital signals for sleep stage classification, 

and the results have been satisfactory [8]. 

In this paper, we proposed using temporal-frequency and 

unsupervised features of the EEG signal in a hybrid form. The 

joint feature set can boost systems’ ability in sleep staging 

comparing with when they’re restricted only to one of 

mentioned features. Moreover, in our research, three classifiers: 

Gaussian Process [9], Random Forest [10], and Hidden Markov 

Model (HMM) [11] have been used, and the results were 

evaluated.  

Furthermore, in order to increase the time resolution, we 

segmented each standard epoch to 5 sub-epochs. The ultimate 

decision about the primary epoch is made based on the 

classification results that we get for each sub-epoch. 

Additionally, to enhance the classification results, we also 

proposed to utilize an ensemble method in which all three 

classifiers’ results are considered in decision making, 

simultaneously. 

This paper is organized as follows. First, in section II, DBN, 

as an unsupervised feature extractor, is introduced. In section 

III, blocks of the proposed framework for an ASSR system is 

reviewed. Section IV presents the experimental setups and 

simulation results, and finally, section V gives the conclusion.  

II. DEEP BELIEF NETWORKS 

Deep Belief Network (DBN) is a multi-layer generative 

graphical model that can learn the probability distribution of the 

input data via its hidden layers [12]. Each DBN, as depicted in 

Fig. 1, is made up of stacked Restricted Boltzmann Machines 

(RBMs) in which a hidden layer of an RBM act as the visible 

layer of the subsequent layer. The connections between the 

hidden and visible layers are bidirectional, and units of each 

layer are fully connected to ones of the other. Note, that in 

RBMs, units of one layer are not allowed to have connections 

to each other. Each configuration of the RBM can be followed 

by a joint probability over hidden and visible variables [13]: 

 

P(v,h;θ)=
e-E(v,h)

∑ e-E(u,g)
u,g

                                                             (1) 
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Fig.1. Graphical Representation of (a) RBM and (b) DBN

 

The energy function is defined as follows: 

 

E(v,h)=-aTv-b
T
h-h

T
Wv                                                          (2) 

   

Where a and b are the bias vectors of the visible and hidden 

layers, respectively, and W represents the weights connecting 

the units of the hidden and visible layers. 

Due to the independency of the layers, the following 

conditional probabilities can be readily calculated as: 

 

P(hj=1|h;θ)=σ(∑ wij
I
i=1 vi+aj)                                                (3)  

 

P(v
j
=1|h;θ)=σ( ∑ wijhj+bi

J
j=1 )                                               (4) 

 

Where 

 

σ(x)=
1

1+e-x
                                                                          (5) 

 

By taking gradient of log P(v|θ),  the following rule for updating 

the RBM weights can be reached: 

 

∆wij=Edata(vihj)-Emodel(vihj)                                               (6) 

 

where  Edata(vihj) is the expectation of the training set, and  

Emodel(vihj)  represents the expectation computed form the 

probability density which is introduced by the model. The 

computation of Emodel(vihj)  is intractable. Henceforth, some 

approximations are applied to tackle this problem. The 

Contrastive Divergence (CD) method, which is an 

approximation of the gradient, is extensively used to train 

RBMs. In this method, the Emodel(vihj) is replaced by a sample 

form Gibbs sampler [14]. 

    Training a DBN follows a layer-wise procedure that the first 

layer is trained, then the hidden values of the first layer become 

the input data of the next layer. The same follows until all layers 

are trained. Moreover, to fine-tune the weights of a generative 

DBN network, unsupervised backpropagation algorithm [15] 

can be applied. 

DBNs with consecutive decreasing number of nodes in each 

layer can be used to learn unsupervised features. To put it 

differently, the following generated features are an abstraction 

of high dimension data. Such high level abstraction has been 

extensively utilized in applications like classification. 

III. PROPOSED AUTOMATIC SLEEP SCORING 

FRAMEWORK 

     As depicted in Fig. 2, the proposed framework for sleep 

stage classification is comprised of “preprocessor”, “time-

frequency feature extractor”, “unsupervised feature extractor”, 

and “classifier” subsystems. In the following, we will describe 

each block in more details. 

A. Preprocessing unit 

    The collected raw data (EEG signal) is usually very noisy and 

it is essential to polish this data before we give it to the 

subsequent ASSR blocks. To clean the data, first, a notch filter 

at 50Hz is applied to the EEG signal aiming to reduce the 

disturbance regarding the power lines and electronic equipment 

affection. Additionally, as EEG signal’s frequency is ranged 

from 0.3 to 32 Hz, with a corresponding band pass Filter, the 

redundant frequencies are eliminated. In the next step, the 

sampling frequency of the filtered EEG signal is converted (Up-

sampled or Down-sampled) to 64 Hz. Moreover, to augment the 

time resolution, the standard epoch consisting of 30-second 

samples of EEG signals is segmented to 5 sub-epochs of 6 

seconds each. Then, epochs having stage-change in their 

neighborhood is removed. Although the elimination of 

transition-epochs may treat ASSR system with less training 

data, the systems’ classification ability is boosted due to the 

higher confidence in the training data. 

Finally, the training data for each class is balanced. In other 

words, we only keep a number of training data such all classes 

(sleep stages) have an equal number of epochs comparing 

others, i.e. all classes will have the same number of epochs as 

the one with the least epochs. 

B. Time-Frequency Features extractor unit 

    Having the polished data, this block extracts 14 features from 

both the time and frequency domain of each epoch. 
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Fig.2. The Proposed Block Diagram of ASSR System

 

1) Relative spectral power: 

    5 features expressing the spectral activity of the EEG signal 

in the common frequencies bands are calculated through the 

ratio of power of the signal in a single frequency band to over 

total power of the signal as follows: 

 

xprel
(f)=

xp(f)

∑ xp(f)
f5
f=f1

                                                                  (7) 

 

Where xp(f) is the power of the signal x in the frequency band 

f. Moreover, the 5 mentioned frequency bands are   

δ [0.5–4 Hz], θ [4–8 Hz], α [8–13 Hz], β [13–20 Hz], and 

γ [20–64 Hz]. 

 

2) Entropy: 

    The entropy is computed from the histogram of the signal in 

each epoch using: 

 

entr = ∑
nj

n

N

j=1

ln
nj

n
                                                                      (8) 

 

In the above equation, n represents the number of the total 

samples in one epoch. N and 𝑛𝑗 are the bin numbers used for 

calculating the histogram and the number of samples in jth bin, 

respectively. 

 

3) Harmonic parameters: 

    Harmonic parameters of a signal include central frequency, 

bandwidth, and the spectral value at the central frequency 

which are calculated as follows [16]:  

 

fc= ∑ fp
xx

fh

fl

(f)                                                                         (9) 

fδ=√
∑ (f-fc

fh
fl

)
2
fp

xx
(f)

∑ p
xx

fh
fl

                                                              (10) 

sfc
=p

xx
(fc)                                                                              (11) 

 

Where Pxx(f) stands for PSD of EEG signal. 

 

4) Hjorth parameters: 

    Hjorth parameters provide the dynamic temporal features of 

EEG signal which are calculated using the variance of the signal 

x, first derivative (x') and second derivative (x'') of the signal 

[17]: 

 

 

 

Activity = var(x)                                                                   (12) 

Mobility =√
var(x')

var(x)
                                                               (13) 

Complexity =√
var(x'')var(x)

var(x')
2

                                                 (14) 

 

5) Skewness and kurtosis 

    Skewness and kurtosis which respectively, describe 

measures of symmetry and the flatness of a distribution are 

defined as: 

 

skew =
m3

 √m2m
2 

                                                                    (15) 

kurt =
m4

m2m
2

                                                                          (16) 

mk =
1

n
∑(x(i)-x̅)k

n

i-1

                                                              (17) 

 

C. Unsupervised Features extractor unit 

    As mentioned in section II, to extract unsupervised features 

from the raw data, we can benefit from DBNs by constructing 

a network in which the layer size is decreasing consequently as 

going forward in the network (Fig. 3). The output is a high level 

representation of the EEG signal. 

    Training a DBN (Determining the weights of the network) 

has two primary parts. First, the weights of the networks are 

pre-trained by using training data in an unsupervised manner. 

Second, the same weights are fine-tuned through the 

unsupervised back propagation.  

    Further, one of the paramount issues with respect to the 

training A DBN is the number of the layers as well as the 

number of neurons in each layer. As there is no specific way 

determining those, in this paper, we proposed to use the 

following method to attain a proper configuration. First, using 

90% of the training data, various DBNs are trained with 

different configurations. Afterwards, the reconstruction error of 

the each DBN is evaluated on the rest of the training set. The 

network setting with the least reconstruction error is our 

selected DBN configuration. The selected DBN is then trained 

with the whole training set, and the ultimate weights are 

determined. Now, by having each epoch of the train or the test 

set, unsupervised features regarding each epoch are obtained as 

the output of the network. These features will be used in for 

sleep stage classification.  
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Fig.3. Unsupervised Feature Learning Block 
 

D. Classifier unit 

    In the last block of the proposed ASSR system, both 

unsupervised and temporal-frequency feature vectors are 

combined in order to have a joint feature vector for each 

individual epoch. The combined feature vector is regarded as 

the input vector of the classifier. Moreover, in this paper, three 

classifiers, namely, the Gaussian process, the random forest, 

and the HMM have been used. Clearly, each of these classifiers 

have different advantages and drawbacks. Gaussian process is 

a non-parametric method that comes along with high accuracy; 

however, it roughly takes lots of time for training the classifier. 

Comparatively, random forest is considered as an ensemble-of-

trees method which outperforms other classifiers regarding its 

implementation ease.  Additionally, the random forest also 

benefits from its high classification speed. Furthermore, to 

count in the temporal information, HMM, as a dynamical 

model, has been used for classification.  

IV. EXPRIMENT AND RESULTS 

    The publicly available dataset used in this paper contains 25 

acquisitions form suspected adult subjects with sleep-disorders. 

Subjects were randomly selected from the patients referred to 

the Sleep Disorder Clinic at St Vincent’s University Hospital, 

Dublin. The subjects were 21 Male and 4 Females, with average 

age: 50 years, average height: 173 cm, and average BMI: 31.6; 

further details are available on PhysioNet [18]. Several vital 

signals are included in the dataset, but for this paper, only a 

single-channel EEG Signal (C3-A2) was selected for further 

analysis. It is clear that this work can be extended such that 

other vital signals or a combination of them are used as well. In 

this dataset, the stages were labeled as: Awake, REM, Stage 1, 

stage 2, stage 3, stage 4, Artifact, and Indeterminate which the 

last two were removed at the pre-processing stage. From the 25 

acquisitions, 10 were randomly selected for training of the 

ASSR system, and 3 other patients were selected from the 

remaining ones to test and evaluate the systems’ performance. 

By selecting only 10 acquisitions for the training phase, we 

were intended to show that the proposed ASSR system can 

perform competently with limited dataset. 

As mentioned in section III.B, to extract unsupervised features 

from the raw data, different configurations have been tested, 

and the one with the least Mean Square Reconstruction Error  

 
Table I. MSRE for various DBN configurations 

 

   
(MSRE) was selected. To obtain a network with 15 or 20 

unsupervised features, the 6 and 7 layer DBNs were followed 

by an acceptable MSREs. Table I shows 4 different 

configurations with corresponding MSREs. The best one (at the 

last row of the table) was selected to extract 15 unsupervised 

features. (The four mentioned configurations were just 

examples and many others have been tested.)  

Furthermore, to obtain a joint feature vector for each epoch, 14 

temporal-frequency features as mentioned in section III.C were 

combined with corresponding unsupervised features. The new 

joint feature vector was comprised 29 features for each epoch. 

Temporal-frequency and unsupervised features were examined 

both separately and jointly with three different classifiers. As 

illustrated in Fig. 4, proposed method based on combining the 

features outperforms other methods in which only one type of 

(Temporal-frequency and Unsupervised) features is utilized. 

Moreover, amongst the classifiers, as expected, the Gaussian 

process surpasses other classifiers.  

To enhance the classification accuracy, the ensemble method is 

used. In this method, the majority vote scheme will run over the 

data, and when it fails to reach a unique answer, the results from 

the Gaussian process classifier are considered as the final 

answer.  

As illustrated in Table II, the accuracy of 89.47% was reached 

for using the proposed method in the paper. It is also perceived 

that the easiest stages to recognized are the SWS and REM, 

respectively. The hardest one with the least accuracy is NREM 

stage 1. 

 

 
 
Fig.4. The classification accuracy using three different classifiers for             
temporal-frequency, unsupervised, and proposed joint features separately. 
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Table II. The confusion matrix for ensemble method 
 

 
 

V. CONCLUSION 

In this paper, sleep stages have been classified using both 

unsupervised and temporal-frequency features. The proposed 

method takes advantage of the strong ability of DBNs in 

modeling non-linearity in the data which can solve the major 

issue of conventional EEG-based classifiers. Also, taking into 

account the temporal-frequency features as well as using an 

ensemble method leads to a higher confidence in classification. 

Our results showed that the proposed method is able to perform 

the sleep staging task with an average accuracy of 89.47%, only 

using a single EEG channel (C3-A2) and limited training data. 
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